Case Series of Wrist TFCC Repair

A fall onto the extended hand and wrist can result in a significant tear of the triangular fibrocartilage complex or TFCC. Painful clicking or clunking of the wrist is a sign that this anatomic structure has been torn. Without it, the wrist is not stable at the distal radioulnar joint (DRUJ) — that’s where the two bones of the forearm attach to the first row of wrist bones.

In this study, hand surgeons from Japan report the results of 11 patients treated arthroscopically for TFCC tears at the foveal insertion point. The fovea is a place on the distal ulnar (forearm) bone where the deep portion of the TFCC attaches. Rupture or avulsion of the TFCC at this place of insertion or attachment leaves the distal radioulnar joint unstable.

Conservative (nonoperative) care consists of a wrist brace and steroid injections and may be the first treatment approach. But if the wrist remains painful, unstable, and limited in daily functions, then surgery may be needed. In the case of these 11 patients, a special arthroscopic technique (transosseous outside-in) was used to reattach (repair) the torn TFCC.

By tunneling through the bone to get to the fovea, the surgeons create bleeding from inside the bone. That bleeding helps form adhesions to hold the triangular fibrocartilage complex (TFCC) to the ulnar insertion point. K-wires were used to reattach the ligament to the bone. For those readers who are interested, the authors provided a written description, X-rays, and drawings to show how the procedure was done.

The real focus of the article was the results of this repair technique. They used two different tools to assess outcomes: the Upper Limb Disability Questionnaire and the Mayo Modified Wrist Score. The main information collected using these two tools included level of disability and function. Additional measurements used to assess results were grip strength, pain, range-of-motion, and joint instability.

All 11 patients did suffer a traumatic injury from a fall and had moderate distal radioulnar joint (DRUJ) instability. The arthroscopic exam showed complete rupture of the TFCC in everyone (no ligament fibers remained at the foveal insertion point). Four of the patients had some scar tissue at that site instead.

After surgery, the TFCC was tight enough to restore wrist stability, reduce pain, and improve grip strength and function. Four of the patients still reported mild pain with activity. Only two of the 11 patients still had some mild instability at follow-up (20 months later).

Although there are several open repair techniques for triangular fibrocartilage complex (TFCC) tears, the results of this study showed that the less invasive arthroscopic approach is effective. The authors say that before this technique can be widely adopted, some questions must still be answered.

For example, which patients can be best treated for this problem using the arthroscopic surgical approach described (transosseous outside-in sutures)? The patients in this study had a traumatic injury but not all TFCC tears are caused by an injury. Can those types of TFCC damage be repaired this way?

They know that anyone with severe degenerative changes of the TFCC must still be treated using an open surgery approach. And if there is a big shift in the position of the ulna (away from the wrist), it is too much to bridge the gap using the arthroscopic technique described in this study.

Patients who have severe distal radioulnar joint (DRUJ) instability likely have serious damage to the soft tissues around the TFCC. In such cases, it may not be possible to surgically repair the TFCC at all. Full reconstruction would be the treatment choice instead.

Other questions yet to be answered include: 1) How long after the injury can the arthroscopically-assisted foveal repair technique be successfully used? 2) How well will these results hold up five or even 10 years from now? 3) Can the results be repeated with a larger set of patients?