You may be referring to a recently published report from surgeons at the well-known Kerlan-Jobe Orthopaedic Clinic in Los Angeles. The topic was postarthroscopic glenohumeral chondrolysis or PAGCL. The authors explore this condition covering risk factors, causes, and signs and symptoms.
Chondrolysis develops when the chondrocytes (cartilage cells) suddenly stop working. They are no longer able to make new cartilage cells to replace the old or to maintain the healthy state of the joint cartilage.
The main risk factor is the arthroscopic surgery itself. But many people have arthroscopic shoulder surgery without developing chondrolysis afterwards. There must be other factors at play here. In fact, the authors suggest there is likely a multifactorial etiology. Several or even many risk factors combined together result in postarthroscopic glenohumeral chondrolysis (PAGCL).
A review of studies with reported cases of PAGCL shows a list of potential risk factors. These etiologic factors include direct trauma to the joint during surgery, shoulder instability before surgery, the use of bioabsorbable sutures and other implants, heating the joint with radiofrequency to shrink the tissues, and the placement of sutures (anchors and knots) on the joint (articular) surface.
The authors explore the details of potential mechanical, thermal, and chemical causes. Mechanical causes include direct injury to the fragile cartilage when the arthroscopic probe or other surgical instruments come in contact with the cartilage surface.
As already mentioned, the use and placement of certain types of sutures may contribute to the development of chondrolysis. Loose or prominent sutures/knots rub against the cartilage causing severe wear and tearing. In some patients, the suture material may set off an immune response called a foreign body reaction. The body sets up a massive inflammatory response in an effort to get rid of the sutures or anchors.
Thermal causes (heating the joint) to stimulate a healing response may actually have the opposite effect of killing the chondrocytes. The use of pain pumps (chemical cause) placed inside the joint may help control postoperative pain but may also contribute to chondrolysis and PAGCL. Anyone with a combined set of risk factors (e.g., foreign-body reaction plus thermal or chemical factor) may be at increased risk for this type of rapid joint destruction.
With this information about potential risk factors and causes in mind, the authors make the following recommendations:
Once the various risk factors and potential causes have been identified, the next step is prevention. When the destructive process begins, there is no going back. And without effective treatment, prevention is absolutely essential.